Повышение эффективности грузовых перевозок на основе создания устойчивой транспортно-логистической системы модульного типа для высокоскоростной обработки и доставки грузов

Миротин Л.Б., Некрасов А.Г., Степанов П.В., Трегубов П.Г.

Введение

Транспорт является ведущей отраслью экономики, взаимодействующий с другими отраслями, включая приемку, обработку и доставку различных видов грузов как по территории РФ, так и за ее пределами. В качестве таких направлений рассматривается взаимодействие организаций-участников транспортнологистической системы для удовлетворения потребности населения, бизнеса и промышленности РФ в быстрой доставке грузов.

Основу такой транспортно-логистической системы составляет не только использование новых технологий по работе с грузом в каждой организации, участвующей в приемке, обработке, транспортировке и доставке груза до получателя, но и создание на базе организаций-участников этой системы технологии их взаимодействия между собой.

Формирование рассматриваемой комплексной работы, в которой представлены полученные ее авторами за последние 5 лет результаты фундаментальных и прикладных научных работ, практических реализаций и технических решений, методологии управления интегрированными базировалось на транспортно-(ИТЛС) cиспользованием существующих логистическими системами показателей критериев безопасности. предложенных И технологические решения и инструментарий выдвигаемой на соискание премии Правительства РФ работы основаны на ИТЛС нового поколения, которая объединяет подсистемы транспортно-логистического обслуживания, логистического организаций-участников ТЛС обеспечения устойчивости взаимодействия И информационных систем.

Коллективом существующий сфере авторов подход транспортнологистического обслуживания был дополнен инновационным подходом, основанным на использовании методологии управления структурной динамики процессов создания и применения ИТЛС, обеспечения комплексной безопасности цепей поставок и интегрированной логистической поддержки для устойчивого обслуживания потребителей грузовых перевозок.

Приоритетная цель выполненного комплекса НИР и ОКР состояла в формировании и внедрении высококачественной и комплексной системы

обслуживания грузоперевозок и мультимодальных грузопотоков на основе интеграции участников транспортной цепи и методологии безопасности и устойчивости жизненного цикла транспортно-логистических процессов.

Содержание полученных результатов более подробно представлено в описании работы, а также защищены 17 патентами России и Европатентами, 12 монографиями, 16 учебниками, а также в многочисленных российских и зарубежных публикациях.

1. Возможности устойчивой транспортно-логистической системы модульноготипа для высокоскоростной обработки и доставки грузов

В настоящее время через рассматриваемую транспортно-логистическую систему пассажирскими авиарейсами возможна доставка следующих видов грузов:

- опасного груза, следующих классов и категорий: 1.1; 1.2; 1.3; 1.4; 1.5; 1.6 (взрывчатые вещества); 2.1; 2.2; 2.3 (газы); 3 (легко воспламеняющиеся жидкости); 4.1; 4.2; 4.3 (твердые горючие вещества, вещества, способные к самовозгоранию; вещества, опасно реагирующие при контакте с водой); 5.1; 5.2 (окислители и органические перекиси); 6.1; 6.2 (ядовитые и инфекционные вещества); 7 (радиоактивные вещества, кроме делящихся ядерных материалов); 8 (коррозийные вещества); 9 (различные опасные вещества, не вошедшие в предыдущий перечень);
- генеральные грузы (грузы, не требующие особых условий хранения и обработки);
- специальные грузы (грузы, требующие особой подготовки к перевозке и особой обработки, а зачастую упаковки и маркировки, специальных документов на перевозку), в том числе:
 - опасные грузы (см. выше);
 - живые животные;
 - ценные грузы;
 - скоропортящиеся грузы (цветы и растения, свежие фрукты и овощи, парное мясо, свежие морепродукты и рыба, яйца для выведения цыплят, вакцины и медицинские препараты и др.);
 - мокрые грузы (отправления с кишками/сырые шкуры, сырое мясо, рыба, замороженное мясо и рыба, грузы с обычным льдом, грузы, которые могут производить жидкость (живые животные), свежие фрукты и овощи и др.);
 - человеческие останки (прах в урнах, останки в гробах «груз 200»);
 - личные вещи;
 - сильно пахнущие грузы;

- оружие, амуниция и военные товары;
- уязвимые и подверженные краже грузы;
- срочные запчасти для сломанного самолета;
- материалы, прессы;
- непроявленные пленки;
- медикаменты для спасения жизни;
- живые человеческие органы или свежая человеческая кровь и др. Некоторые виды грузов представлены на рис.1.

Рис.1. Некоторые виды грузов высокоскоростной обработки и доставки

Транспортно-логистическая система высокоскоростной обработки и доставки грузов обладает широкой географией доставки, состоящей из всех действующих пассажирских аэропортов России, СНГ, Европы и других стран (рис.2.)

Рис.2. География высокоскоростной обработки и доставки грузов

Высокоскоростная обработка и доставка грузов осуществляется на принципе интеграции всех участников логистической цепи доставки грузов. В основе принципа интеграции лежит программная платформа «InerLogistics»,

используемая всеми участниками транспортно-логистической системы и обеспечивающая их быстрое взаимодействие между собой (рис.3.).

Рис. 3. Взаимодействие участников транспортно-логистической системы

2. Принципы высокоскоростной обработки и доставки грузов

Авторами работы создана логистическая система и инфраструктура высокоскоростной обработки и доставки грузов, основанная на интеграции всех участников цепи доставки грузов в единую информационную программную платформу «InerLogistics», обеспечивающую быстрый обмен информацией (рис.4.).

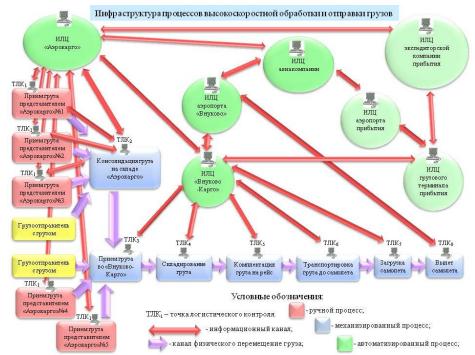


Рис.4. Логистическая ифраструктура взаимодействия участников ТЛС

Все участники цепи высокоскоростной обработки и доставки грузов имеют доступ к необходимой информации в режиме «Онлайн» в специальных модулях

информационной платформы, что обеспечивает быстрое оформление необходимых для высокоскоростной обработки и доставки грузов документов (рис.5).

Рис.5. Модули информационной платформы «Интерлогистик»

Авторами работы был создан авиационный грузовой терминал «Внуково-Карго» с технологией высокоскоростной обработки и отправки грузов, позволяющей значительно ускорить обработку груза (рис. 6).

Рис. 6. Высокотехнологичный авиационный терминал «Внуково-Карго»

На рис. 7 представлено сравнение времени обработки груза с другими авиационными грузовыми терминалами московского региона.

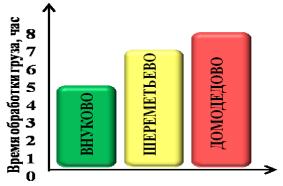


Рис. 7. Сравнение времени обработки груза

Для ускорения загрузки воздушного судна авторами был создан спецавтомобиль, сокративший время загрузки с 60 до 20 мин. Автомобиль имеет

сдвигающийся тент, защищающий груз от осадков во время транспортировки от терминала до самолета, а также регулируемую по высоте платформу, позволяющую поднять груз на нужную высоту для облегчения загрузки в багажный отсек пассажирского самолета (рис.8).

Рис. 8. Загрузка пассажирского самолета с применением спецавтомобиля

3. Управление рисками в ТЛС высокоскоростной обработки и доставки грузов

В транспортно-логистической системе доставки грузов имеют место следующие виды рисков, представленные на рис. 9.

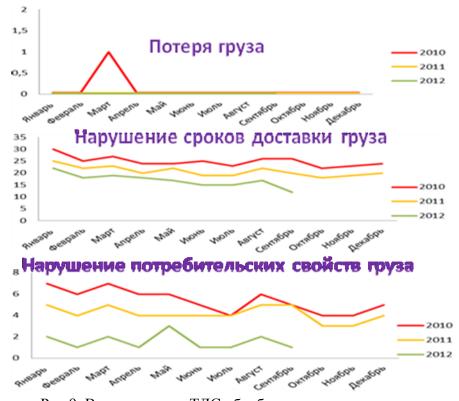


Рис. 9. Виды рисков в ТЛС обработки и доставки грузов

Внедрение разработанной авторами технологии управления рисками позволило более чем на 10% снизить нарушения и потери при обработке и доставке грузов.

Авторами разработаны и внедрены новые стандарты качества и рискменеджмента в цепи обработки и доставки грузов, представленные на рис.10.

•ГОСТ Р ТК /355/ ПК 6 — общие требования к цепям поставок; •Руководство по управлению глобальными стандартами в цепях поставок; •РК СМК ООО «Внуково-Карго».

Рис. 10. Перечень стандартов, разработанных и внедренных в ТЛС

На базе разработок авторов реализован новый экономический механизм по снижению затрат и повышению качества услуг в интегрированной логистической цепи доставки грузов на основе принципа «приемлемого риска» (принцип ALARA). Данный механизм вендрен в созданную новую иформационную платформу «InerLogistics» и программный продукт «Экспедитор-Стандарт» (рис.11). Он обеспечивает контроль рисков в процессе обработки и доставки грузов.

Рис.11. Программное обеспечение высокоскоростной обработки и доставки грузов

Авторами работы создана новая модель управления ответственностью участников системы обработки и доставки грузов на базе анализа информации, получаемой от сигнальных устройств. Анализ осуществляется автоматически аппаратно-программным комплексом (рис.12).

Рис.12. Модель управления ответственностью участников системы обработки и доставки грузов

Также авторами созданы и запатентованы многочисленные датчики и устройства, позволяющие определить сохранность груза получателем, некоторые из них представлены на рис. 13.

Рис. 13. Устройства, определяющие сохранность груза

4. Система расширяющегося логистического взаимодействия участников высокоскоростной доставки грузов

Авторами разработана модель расширяющегося логистического взаимодействия участников цепи обработки и доставки грузов, представленная на рис.14.

Рис. 14. Модель расширяющегося логистического взаимодействия

Первый уровень обозначает груз как логистическую единицу. Второй уровень обозначает взаимодействие процессов по доставке груза внутри каждого участника ТЛС. 3-й уровень обозначает доставку груза прямым авиарейсом из аэропорта «Внуково» по налаженной схеме.

4-й уровень обозначает возможность доставки грузов из аэропорта «Внуково», используя ресурсы всех интегрированных в информационную платформу «InerLogistics» участников. В случае, когда из аэропорта «Внуково» нет прямого авиарейса в аэропорт назначения, в информационно-логистическом центре «Внуково-Карго» через информационную платформу «InerLogistics» происходит поиск стыковочных авиарейсов в аэропортах, интегрированных в эту информационную платформу. Далее определяется аэропорт стыковки и авиарейс, и происходит быстрое оформление документов для доставки груза. Информационно-логистический центр изображен на рис.15.

Рис. 15. Информационно-логистический центр «Внуково-Карго»

В случае когда на 4-м уровне невозможно доставить груз в указанный пункт назначения, информационная система «InerLogistics» в автоматическом режиме обеспечивает поиск экспедиторов, авиакомпаний и терминалов в других странах через глобальную сеть «Internet», а также по выбору оператора обеспечивает запрос информации в найденные организации о возможности доставки груза. Схема 5-го уровня взаимодействия представлена на рис. 16.

Рис.16. Схема взаимодействия и география доставки грузов на 5-м уровне

Информационное сопровождение груза в режиме реального времени в системе высокоскоростной обработки и доставки грузов осуществляется в информационно-логистическом центре, расположенном на грузовом авиационном терминале «Внуково-Карго».

Заключение

Авторами предложены новые логистические модели и разработана транспортнологистическая система, программные продукты, технологии и оборудование для управления цепями поставок материальных объектов во времени и пространстве, существенно повышающих объемы, эффективность и качество доставки грузов в любые регионы мира.

Высокоскоростная доставка грузов базируется на широком использовании, регулярных пассажирских авиарейсов (более 60% объемов авиаперевозок по России). В багажные отсеки к багажу пассажиров догружается попутный груз до максимального взлетного веса авиалайнера без нарушения его полетных характеристик, объем которого зависит от типа самолета и достигает до 80 м³ и 14.0 тонн (Airbus A-330).

В аэропорту Внуково г. Москва был реализован новый проект грузового терминала модульного типа. На базе разработанной авторами транспортно-логистической модели интеграции ресурсов экспедиторов, грузового терминала и авиакомпаний создана система высокоскоростной обработки и доставки грузов. Разработано программное обеспечение для оперативного обмена информацией со всех рабочих мест участников процесса и механизированы более 90% выполняемых операций (которых более 80). В результате время обработки и подготовки груза к загрузке сократилось с 12 до 5-ти часов.

Совместно с авиакомпаниями разработаны математические модели, алгоритмы и программное обеспечение для расчета рациональных схем заполнения грузом багажного отсека различных типов самолетов по объему и весу без нарушения их центровки.

Для загрузки и выгрузки груза в багажное отделение пассажирского самолета создан новый тип авиационных погрузчиков, сокращающих время загрузки самолета в 2 - 3 раза.

По сравнению с существующими, внедрение новых технологий позволило до 30% (примерно на 1.5-3.0 тонны) повысить дозагрузку каждого регулярного рейса, что по терминалу «Внуково» составляет до 12.0 тыс. тонн дополнительно перевозимого груза в год.

Для доставки грузов в различные регионы мира в структуре терминала «Внуково Карго» разработана модель и методология расширяющегося логистического взаимодействия в цепях поставок модульного типа. Они реализованы на адаптивных возможностях авторской информационной платформы «ИнтерЛогистик» по увеличению числа участников перевозки, добавлению новых участников и новых услуг, обеспечению единого информационного пространства всех участников на базе интеграции их систем.

На базе платформы «ИнтерЛогистик» функционирует информационнологистической центр Внуково (ИЛЦ) для разработки оптимальных маршрутов доставки грузов и управления транспортно-логистической системой с переменной структурой доставки грузов на принципах аутсорсинга услуг участников перевозки.

Для повышения качества доставки и сохранности грузов на базе международных стандартов ISO 9001 и ISO 28 000 авторами предложена принципиально новая логистическая модель управления поставками на основе концепции «управления приемлемыми рисками». Она реализована путем создания системы идентификации рисков, сбора и отслеживания информации о рисках на базе платформы «ИнтерЛогистик», а также технологий и устройств обеспечения сохранности груза на базе авторского сигнально-индикаторного метода «СИЛТЭК».

Практическим результатом работы является повышение на 15–20% объемов полезных грузов, перевозимых пассажирскими самолетами (экономический эффект более 1.0 млрд. руб), сокращение на 1-2 дня по России и на 3-5 дней по планете времени доставки грузов из Московского региона, снижение вдвое нарушений и потерь при транспортировке и доставке.